The Cosmic Lithium Abundances and Physics beyond the Standard Model

Karsten JEDAMZIK[†]

[†] LPTA, Montpellier

The Big Bang Nucleosynthesis standard model

SBBN: A one parameter model

overconstrained \rightarrow consistency checks possible

The ⁷Li Spite plateau

(almost) no variation with metallicity and stellar temperature

- no measurable star-to-star scatter
- Interpretation the Primordial ⁷Li Abundance

Spite & Spite 82, Bonifacio & Molaro 97, Ryan *et al* 99, Melendez Ramirez 04, Charbonnel & Primas 05, Asplund *et al* 06, ...

⁷Li discrepancy $4.2 - 5.3\sigma$

Nuclear reactions/stellar atmospheres ?

- stellar temperature $\Delta T \sim 900$ K underestimated seems impossible
 - narrow nuclear resonance in ⁷Be +²H→ ⁹B^{*}_{5/2+} → 2⁴He + p Cyburt & Pospelov 09, Angulo *et al.* 05 seems unlikely but not ruled out → need further measurement

Depletion of Lithium in PopII stars ?

$^{7}\mathrm{Li}$ is observed in the atmospheres of PopII stars it may be destroyed via $^{7}\mathrm{Li}+p \rightarrow ^{4}\mathrm{He}$ + $^{4}\mathrm{He}$ in the interieur of the star

atmospheric material transported into the star and ⁷Li-depleted gas returned to the atmosphere

Spite plateau not primordial ?

Depletion of ⁷Li by factor 2 - 4 in halo stars is not understood and may currently only be explained with fine-tuned stellar conditions Dispersion ?

⁷Li depletion by atomic diffusion in PopII stars ?

tuned turbulent diffusion coefficient $D_T = 400 D_{4He}^{gs} \left(\frac{\rho}{\rho(T_0)}\right)^{-3}$ at $\log(T_0) = 6.0 \pm 0.1$ $\rightarrow \pm 25\%$

- atomic diffusion
- turbulent mixing

but stellar models ad hoc and tuned

 \rightarrow factor 1.8 ⁷Li depletion

⁶Li/H observations

- ⁶Li and ⁷Li absorption features blend together
- ⁶Li from asymmetry of lines
- asymmetry of lines from convective Doppler shifts ?
- non-LTE hydrodynamic simulations of two groups reach opposite conclusions

⁶Li production by early cosmic rays: Energetics ?

⁶ Li originates in galactic cosmic ray nucle- osynthesis (along, with ⁹ Be, and B) • via $p, \alpha + CNO \rightarrow LiBeB$ • and some $\alpha + \alpha \rightarrow Li$	standard cosmic rays may provide 5 eV/nucleon (up to $[Z] \sim -2.7$)
need 100 eV/nucleon to synthesize ${}^{6}\text{Li/H} \sim 5 \times 10^{-12}$	only very efficient accretion on central black hole, or large fraction of baryons in supermassive $\sim 100 M_{\odot}$ stars may provide the required cosmic rays Suzuki & Inoue 00 Rollinde <i>et al. 05</i> , Prantzos <i>et al. 05</i> Nath <i>et al.</i> 05

if $^6\mathrm{Li}$ exists in these stars of the abundance as claimed \rightarrow something important about the Universe has been learned

BBN with decaying and annihilating particles

- charge exchange reactions $\pi^- + p \rightarrow \pi^0 + n$
- elastic- and inelastic scatterings $p + p \rightarrow p(n) + (p)n + \pi$'s
- Spallation reactions $p(n) + {}^{4}\text{He} → {}^{3}\text{H}, {}^{3}\text{He}, {}^{2}\text{H} + \dots$
- ✓ Coulomb stopping of charged nuclei $^{3}H + e^{\pm} \rightarrow ^{3}H' + e^{\pm}$

Jedamzik 04,06

including $^{3}\mathrm{He}$ /D $\,< 1.72;\,^{6}\mathrm{Li}\!/^{7}\mathrm{Li}\,< 0.1875$

injection of energetic photons and electrons/positrons

- inverse Compton scattering $e^{\pm} + \gamma_{\text{CMBR}} \rightarrow e^{\pm} + \gamma$
- Bethe-Heitler scattering $\gamma + p \rightarrow p + e^{-} + e^{+}$

photodisintegration $\gamma + {}^{4}\mathrm{He} \rightarrow {}^{3}\mathrm{H} + p$

Karsten Jedamzik, IAU268, Light Elements in the Universe, November 9 th '09 – p. 11

Destruction of ⁷Li **during BBN by injection of neutrons**

K.J. 04

⁷Li destruction: ⁷Be + $n \rightarrow$ ⁷Li +p; ⁷Li + $p \rightarrow$ ⁴He + ⁴He at $T \approx 30 \text{ keV}$ need only 10^{-5} extra neutrons per baryon

some extra ²H will be also synthesized

Production of ⁶Li **in SBBN**

production of ⁶Li in SBBN by D + ⁴He \rightarrow ⁶Li + γ which is quadrupole suppressed \rightarrow ⁶Li/H \sim 10⁻¹⁴

Production of ⁶Li **in cascade nucleosynthesis**

⁶Li is very easily produced by small "perturbations" of the standard model Dimopoulos *et al.* 88, K.J. 00

Electromagnetic: $\gamma + {}^{4}\text{He} \rightarrow {}^{3}\text{H} + p$ ${}^{3}\text{H} + {}^{4}\text{He} \rightarrow {}^{6}\text{Li} + n$ at $T \lesssim 0.1 \text{ keV}$ Hadronic: $n + {}^{4}\text{He} \rightarrow {}^{3}\text{H} + p + n$ ${}^{3}\text{H} + {}^{4}\text{He} \rightarrow {}^{6}\text{Li} + n$ at $T \lesssim 10 \text{ keV}$

Production of ⁶Li **in catalytic nucleosynthesis**

negatively charged weak mass scale particles X^- during BBN \rightarrow

formation of bound states with nuclei

 ${}^{7}\text{Be} + X^{-} \rightarrow ({}^{7}\text{Be}X^{-}) + \gamma \text{ at} \approx 30 \text{ keV}$ ${}^{4}\text{He} + X^{-} \rightarrow ({}^{4}\text{He}X^{-}) + \gamma$, at $\approx 10 \text{ keV}$

 X^- acts as catalysator for reactions

Pospelov 06,07, Kamimura et al. 08, ...

 $({}^{4}\text{He}X^{-}) + D \rightarrow {}^{6}\text{Li} + X^{-}$ important when $B_{h} \lesssim 10^{-2}$ as $({}^{4}\text{He}X^{-}) + {}^{4}\text{He} \rightarrow ({}^{8}\text{Be}X^{-}) + \gamma;$ with supersymmetric stau ! Catalysis and ⁶Li, ⁷Li, and ⁷Be

Catalysis:

- main production mechanism for ⁶Li if $B_h \lesssim 10^{-2}$
- may only solve the ⁷Li problem, if $B_h \lesssim 10^{-5}$ rather small and $\Omega_X \gtrsim 10$ rather large
- not clear if may lead to some ⁹Be production

The lithium friendly parameter space

Signatures at the LHC !

A metastable particle X with life time between 100 - 1000 sec, if not too massive, could be potentially produced at the LHC (since having at least some hadronic interactions), and, if electromagnetically or strongly interacting stopped in the detector \rightarrow smoking gun for non-standard BBN \rightarrow possible connection to the dark matter

Examples:

supersymmetric gravitino supersymmetric stau Next-to-LSP with gravitino LSP gluino in split supersymmetry

Example: Gravitino dark matter in the CMSSM

K.J., Choi, Roszkowski, Ruiz de Austri 06

Production of cosmic ⁶Li **by neutralino annihilation**

K.J. 04ab, Pospelov & K.J. 09

Signatures at the LHC !

if the LHC discovers a light stable neutralino of mass $m \approx 20 - 90 \,\text{GeV}$ and of hadronic annihilation cross section $3 \times 10^{-26} \text{cm}^3 \text{s}^{-1}$ as required to explain origin of the dark matter by annihilation freeze-out \rightarrow explanation of all the ^6Li as claimed to exist in HD84937

Varying fundamental constants and ⁷Li

Dmitriev, Flambaum, & Webb 04, Dent, Stern, & Wetterich 07, Berengut, Flambaum, & Dmitriev 09

 $^{7}\mathrm{Li}$ depends strongly on B_{d} and $B_{^{7}\mathrm{Be}}$

 $\Delta B_d/B_d \approx -0.019 \pm 0.005 \rightarrow \text{reduce } {}^7\text{Li}$ (and ${}^4\text{He}$) $\Delta m_q/m_q \approx 0.013 \pm 0.002 \rightarrow \text{reduce } {}^7\text{Li}$

Conclusions

- the by standard BBN at η_{WMAP} predicted D (and ^{4}He) are in good agreement with those observed
- in contrast, there is a factor 3-4 discrepancy between SBBN predicted and observationally inferred ⁷Li
- this discrepancy could possibly be removed if ⁷Li is destroyed in Pop II stars, though how this is done exactly is not understood
- Internatively BBN could have been non-standard, e.g. including the decay of a relic particle \rightarrow potentially testable at the LHC
- accelerators ultimately may teach us that the apparent anomalies in the cosmic ⁷Li (and ⁶Li) abundance are ultimately connected to the dark matter

D/H from Quasar Absorption Systems

